A Survey of TBT Capabilities of the Upgraded TeV BPMs

Rob Kutschke, CD/EXP
Tevatron Department Meeting
February 18, 2005

This Talk Will Show:

- Injection TBT
 - Triggered by injection.
 - Either single bunch or uncoalesced beam.
 - Can see: synchrotron motion, betatron motion, quadrupole oscillations of bunch in the bucket, HV coupling, plus some instrumental artifacts.
- TBT
 - Triggered by request.
 - Will show 36x36 during normal HEP store.
 - Do NOT ping beam.
 - Can see the "15 Hz" motion.
- Using data taken at A3 over the past two weeks.

1.1 mm full vertical scale

0.6 mm full vertical scale

- Injection TBT; 150 GeV; 8192 turns.
- One coalesced bunch. HEP shot after all tuning.

- Synchroton line present in H but not V.
- 150 GeV expected sync frequency: 80 Hz.

- Injection TBT; 150 GeV; 8192 turns.
- Uncoalesced beam. Tuneup shot with large injection mismatches.

2/18/2005

- HV coupling is clear.
- Frequency of envelope is about 260 Hz.

Fourier Transforms of Position Data, Feb 7/05, Uncoalesced

Sum Signals for BPMs in A3, Feb 7/05, Uncoalesced

- Injection TBT.
- Sum signal (A+B)
- Same data as for positions.
 - Uncoalesced.
 - 150 GeV.
- Dominant frequency is different than in position data!

Detail of FT of Sum Signals for BPMs in A3, Feb 7/05, Uncoalesced

- Detail of Fourier transform.
- 150 GeV
 - $-f_{\text{sync}} \sim 80 \text{ Hz}.$
- Main structure
 at ~160 Hz is
 quadrupole
 oscillation of
 bunches in their
 buckets.

- TBT middle of HEP 36x36 store.
- 980 GeV; f_{sync} ~37 Hz.
- Similar features on other BPMs.
- Closed orbit resolution correlates with size of 15 Hz oscillations.

- Amplitude of TBT Motion
- △ RMS of Closed orbit Measurements
- \square Simple Model, sqrt(0.5 TBT² + 7²)
- Can observed TBT motion explain the variation in RMS of closed orbit measurements?
- In broad strokes yes. Still working on a quantitative model.

 Not sure why line at 19918 Hz is at the same frequency in both horizontal and vertical?

Conclusions

- TBT and Injection TBT are working.
- We can cleanly see:
 - Synchrotron lines
 - Betatron lines
 - Quadrupole oscillations
 - HV Coupling
 - 15 Hz noise.
- Can make quantitative measurements of these in 8192 turns.
- 1113/5 artifacts are present in safe places.

Further Details

- Documents earlier than 1565 discuss debugging the instrument.
- Beams-doc-1565
 - HEP Shot. One coalesced bunch.
 - Synchrotron, betatron motion.
- Beams-doc-1566
 - Tune up shot. Uncoalesced.
 - Synchrotron, betatron motion
 - Quadrupole oscillation of bunch in bucket.
 - Resolution.
- Beams-doc-1571
 - HV Coupling
- Beams-doc-1577
 - 15 Hz noise.
- Watch DocDb for latest developments.

Backup Slides

Fourier Transform

• F(f), defined by:

$$\tilde{F}(f) = C(f) \sum_{n=0}^{N-1} (P_n - \overline{P}) \exp(i2\pi f t_n)$$

- N is number of data points.
- P_n, t_n are position and time on turn n.
- C(f) is a normalization factor.
- P is mean position of all data.
 - Subtracted to remove alias at 0 Hz.

1113 / 5 Artifacts

- Digitizer is clocked at 7/5 f_{RF}.
- After 7 cycles of this clock, and 5 cycles of RF, the 7/5 RF clock is back in sync with the RF.
- After one full turn of 1113 RF cycles, the 7/5 clock has not gone through a full cycle of 7 states.
- When first bunch of second turn arrives, the 7/5 clock has a different phase than it did when the first bunch of the first turn arrived.
- After 5 turns, the two clocks are back in sync.
- Beams-doc-1066

All 8 plots on same scale.